
Problem Space
The GPU Parking Problems

Why standard Kubernetes scheduling fails for ML workloads?

Why Volcano?
1. Highly Extensible CNCF Design

a. Native capabilities implemented as plugins
2. Good core framework

a. Custom plugins can build a quota-based system driven
by number of GPUs

3. OOTB support for PyTorch, TensorFlow workflows

1. Custom Plugin
● Optimal Over Quota Behaviour
● Project and Job Ordering for fairness

2. New Actions
● Custom-Reclaim
● Over-Quota Allocate

3. Behavior tuning for Gang,
Messaging, etc.

4. New CRD : ClusterProject
● Contains project quotas
● Read by the scheduler

How do we build our scheduler?

Custom Scheduling

Scheduling ML Jobs at Scale
Manvi Gupta

(Computer Scientist 1, Adobe Systems)

Proposed Solution

[*] https://www.infracloud.io/blogs/batch-scheduling-on-kubernetes/
https://www.cncf.io/blog/2021/02/26/volcano-collision-between-containers-and-batch-computing/

Two-Pass Scheduling Algorithm:
● Pass 1 (Under-Quota): Schedule jobs within

project GPU limits using fair-share ordering

● Pass 2 (Over-Quota): Best-effort allocation of
remaining resources to pending jobs

- Topology Awareness:
All pods of a job are scheduled in the same
node pool

Cluster Project

Volcano Setup*

apiVersion: my.research.project/v1
kind: ClusterProject
spec:
 projectName: "ml-research-team"
 gpuQuota:
 "nvidia.com/gpu": 16
 "nvidia.com/a100": 8
 allowOverQuota: true
status:
 overQuotaGPUs: 4
 queuedJobs: 3

https://www.infracloud.io/blogs/batch-scheduling-on-kubernetes/
https://www.cncf.io/blog/2021/02/26/volcano-collision-between-containers-and-batch-computing/

